Поверхности второго порядка

Поверхности второго порядка

Поверхности второго порядка

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии. Здесь же мы ограничимся определениями и иллюстрациями.

Определение 5.12. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, c  > 0, называется эллипсоидом .

1
Рисунок 5.7.1.

Свойства эллипсоида.

    Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует

    Эллипсоид обладает

      центральной симметрией относительно начала координат, осевой симметрией относительно координатных осей, плоскостной симметрией относительно начала координат.

    В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс.

2
Рисунок 5.7.2.

Определение  5.13. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется эллиптическим параболоидом .

Свойства эллиптического параболоида.

    Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z  ≥ 0 и принимает сколь угодно большие значения.

    Эллиптический параболоид обладает

      осевой симметрией относительно оси Oz , плоскостной симметрией относительно координатных осей Oxz и Oyz .

    В сечении эллиптического параболоида плоскостью, ортогональной оси Oz , получается эллипс, а плоскостями, ортогональными осям Ox и Oy – парабола.

Определение 5.14. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется гиперболическим параболоидом .

Рисунок 5.7.3.

Прямая, касающаяся сферы – это прямая, которая имеет единственную общую точку со сферой. Аналогично можно ввести понятие касательной прямой к поверхности конуса (цилиндра) , однако при этом рассматриваются прямые, не проходящие через точки на основании конуса (цилиндра) и через вершину конуса.

Выпуклый многогранник называется вписанным , если все его вершины лежат на некоторой сфере. Эта сфера называется описанной для данного многогранника Выпуклый многогранник называется описанным , если все его грани касаются некоторой сферы. Эта сфера называется вписанной для данного многогранника. Теорема о вписанной сфере треугольной пирамиды

Если сфера вписана в многогранник, то объем этого многогранника равен где S – площадь полной поверхности многогранника, r – радиус вписанной сферы.

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии.

Свойства гиперболического параболоида. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число. Гиперболический параболоид обладает осевой симметрией относительно оси Oz , плоскостной симметрией относительно координатных плоскостей Oxz и Oyz . В сечении гиперболического параболоида плоскостью, ортогональной оси координат Oz , получается гипербола, а плоскостями, ортогональными осям Ox и Oy , – парабола.

Понятие объема в пространстве вводится аналогично понятию площади для фигур на плоскости.

Анализ функционально графического моделирования как основной линии обучения. Использование генетической и логической трактовок понятия функции. Определение основных направлений и методической схемы введения нового материала в школьный курс математики.
Графические методы решения задач