Основы начертательной геометрии Метрические задачи Фронтальная проекция Разработка чертежей

Комплексный чертеж на примере изображения точки

Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений

 В начертательной геометрии и в черчении для построения изображений в основном используется один из методов проецирования. Когда направление взгляда наблюдателя перпендикулярно к плоскости проекций, относительно которой сам наблюдатель условно находится на бесконечно удаленном расстоянии (Рис.3). Проецирующий луч  от глаза наблюдателя   проходит через точку  какой-либо фигуры в пространстве и пересекает плоскость проекций , образуя ортогональную (прямоугольную) проекцию . (Символически: ).

 Однако  – еще не чертеж. Чертеж должен читаться однозначно, то есть должен быть обратимым. В данном случае проекции  может соответствовать не только точка , но и любая точка , принадлежащая проецирующему лучу l. В итоге: , но . Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций


 Способ получения обратимых изображений был предложен создателем начертательной геометрии как науки Гаспаром Монжем (1746-1818). Для этого оказалось достаточно: предмет спроецировать одновременно на две плоскости проекций. Например, - на две взаимно перпендикулярные плоскости: – горизонтальную и  – фронтальную плоскости проекций (Рис.4). В этом случае на лицо обратимость  и .

  Для усиления наглядности изображений и для решения многих геометрических задач часто приходится проецировать предмет на три плоскости: , и . Последняя из них – профильная плоскость проекций (Рис.5).

  Линии пересечения плоскостей проекций называются осями проекций. На этих осях происходит излом линий связи между отдельными проекциями точек. Звенья ломаных линий отражают расстояния точки в пространстве до соответствующих плоскостей проекций. Если оси проекций совместить с осями ортогональной системы координат , то эти расстояния примут свои численные значения. (Рис.4 и 5). Предел пропорциональности и предел упругости у для многих материалов, например для стали, оказываются настолько близки, что зачастую их считают совпадающими и отождествляют несмотря на физическое различие этих пределов.

 Плоскости проекций делят пространство на 4 квадранта плоскостями   и  и на 8 октантов – тремя плоскостями (Рис.4 и 5). От положения точки в той или иной части пространства зависят знаки её координат. Например, в I-м квадранте (Рис.4) все координаты положительны, во 2-м – координата  уже отрицательна.

 Что касается положения наблюдателя относительно плоскостей проекций: место наблюдателя или в 1-м квадранте или в 1-м октанте. Пример. Построить развертку боковой поверхности эллиптического конуса с круговым основанием

 Пока мы получили только пространственные модели обратимых комплексных изображений на двух и на трех плоскостях проекций.

13. Если надо показать координаты вершины скругляемого угла или центра дуги скругления, то выносные линии проводят от точки пересечения сторон скругленного угла или от центра дуги скругления (рис. 3.11)

14. Если вид или разрез симметричного предмета или отдельных, симметрично расположенных элементов, изображают только до оси симметрии с обрывом, то размерные линии, относящиеся к этим элементам, проводят с обрывом, и обрыв размерной линии делают дальше оси или обрыва предмета, а размер указывают полный (рис. 3.12)

 Рис.3.11 Рис.3.12

 Рис.3.13 Рис.3.14

15. Размерные линии можно проводить с обрывом и при указании размера диаметров окружности независимо от того, изображена ли окружность полностью или частично, при этом обрыв размерной линии делают дальше центра окружности (рис. 3.13)

16. При изображении изделия с разрывом размерную линию не прерывают (рис. 3.14)

17. Размерные числа нельзя разделять или пересекать, какими бы то ни было линиями чертежа. Осевые, центровые линии (рис.3.15а) и линии штриховки (рис.3.15б) в месте нанесения размерного числа допускается прерывать.

 а) б)

 Рис.3.15

 Рис.3.16

18. Перед размерным числом радиуса помещают прописную букву R. Ее нельзя отделять от числа любой линией чертежа (рис. 3.16)


На главную