Основы начертательной геометрии Метрические задачи Фронтальная проекция Разработка чертежей

Пересечение геометрических фигур, если одна из них – проецирующая.

  Наиболее легкий вариант пересечения геометрических фигур, если хотя бы одна их этих фигур задана проецирующей. На пространственных моделях проецирования и на комплексных чертежах (Рис.36) хорошо видно, что одну из проекций результата пересечения долго искать не надо. Результат накладывается или полностью совпадает с вырожденной проекцией одной из пересекающихся фигур. На комплексном чертеже остается только построить вторую проекцию результата пересечения. Используя принадлежность результата пересечения к пересекающейся фигуре общего положения. Кривая линия общего вида Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких линий требуется: теоретически бесконечное, а практически – разумное конечное число точек. Для подобных кривых наиболее часто встречается задача на построение третьей ее проекции по двум заданным.

Материалы в машиностроении В машиностpоении и дpугих отpаслях пpомышленности пpименяется большое количество pазличных матеpиалов: сталь, чугун, цветные металлы, пластмассы и т.п. В зависимости от химического состава и технологии пpоизводства качественная хаpактеpистика одного и того же вида матеpиала может быть pазличной. Стандарты на матеpиалы устанавливают соpта и их pазновидности, маpки и дpугие хаpактеpистики. Тpебования к матеpиалу, из котоpого должна быть изготовлена деталь, указывают на pабочем чеpтеже детали в виде условного обозначения, котоpое записывают в гpафе "Матеpиал" основной надписи. Для деталей сбоpочных единиц, на котоpые не выполняются отдельные pабочие чеpтежи, условное обозначение матеpиала пpоставляют в спецификации под наименованиями детали.

 При пересечении прямой общего положения с проецирующей плоскостью (Рис.36а) горизонтальная проекция точки их пересечения – в месте пересечения проекции прямой с вырожденной проекцией плоскости. На комплексном чертеже остается построить недостающую проекцию точки пересечения, используя известное положение о принадлежности точки к прямой общего положения.

 При пересечении двух плоскостей, одна из которых – проецирующая (Рис.36б), горизонтальная проекция линии пересечения совпадает с вырожденной проекцией плоскости. Недостающая проекция линии пересечения строится по двум точкам, используя положение о принадлежности прямой к плоскости (в данном случае – к плоскости общего положения). Циклоида – траектория (путь) точки К, лежащей на окружности, которая катится без скольжения по прямой MN

 На Рис.36в принципиального отличия от предыдущего примера нет. Кроме того, что проецирующая плоскость пересекается с криволинейной поверхностью по кривой линии. Для построения второй проекции которой необходимо использовать достаточно плотный каркас из точек.

 В рассмотренных примерах определение видимости можно определять без привлечения конкурирующих точек. Достаточно сопоставить положение вырожденной проекции относительно проекции второй фигуры и (условно) проекции наблюдателя.

Построение сопряжения дуги и прямой линии.

Радиус сопряжения задан

Построим сопряжение для случая, когда заданная окружность находится с внешней стороны сопрягающей дуги (внешнее сопряжение).

Алгоритм  построения:

Находим центр сопряжения. На расстоянии, равном радиусу сопряжения, проводим геометрические места точек, равноудаленных от заданных прямой и окружности (рис2.10 б). Центр сопряжения – точка О.

Находим точки сопряжения А и В: опускаем перпендикуляр из точки О на заданную прямую и соединяем точку О с центром заданной окружности (рис2.10 в);

Строим дугу сопряжения: между точками сопряжения проводим сопрягающую дугу заданного радиуса R (рис.2.10е).

Законченные построения показаны на рис. 2.10д.

 Рис.2.10

 На рисунке 2.11 показано построение сопряжения между дугой окружности и прямой линии в случае, когда заданная окружность находится внутри сопрягающей дуги (внутреннее сопряжение).

 Рис.2.11


На главную