Основы начертательной геометрии Метрические задачи Фронтальная проекция Разработка чертежей

Точка и линия на поверхности.

 Напомним уже известное, что точка принадлежит поверхности, если она на линии, принадлежащей поверхности. Хорошо, если эта линия имеет простые проекции. В противном случае приходится прибегать к способу случайной кривой на каркасе поверхности. Спецификация сборочного чертежа Cпецификация состоит из pазделов, котоpые pасполагаются в следующей последовательности: документация, комплексы, сбоpочные единицы, детали, стандаpтные изделия, пpочие изделия, матеpиалы, комплекты. Hаличие их опpеделяется составом изделия.

 Дано:

Тор  

_____________________

?: .

 Решение:

1). , , .

2). .

 Пример 1 (Рис.33). Построить фронтальную проекцию точки , принадлежащей открытому тору .

  Для решения задачи можно использовать способ образующей с простыми проекциями. Поскольку через точку  на торе можно провести окружность с проекциями в виде прямой и окружности для задания окружности используем горизонтальную проекцию точки  и точку 1 на меридиане . Основные геометрические фигуры Два способа задания геометрических фигур: кинематический и статический. Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры.


 Пример 2 (Рис.34). Построить горизонтальную проекцию точки , принадлежащей коноиду .

В большинстве механизмов движущие силы и силы сопротивления в течение времени установившегося движения непостоянны. Поэтому для определения коэффициента полезного действия подсчитывают работу всех движущих сил и производственных сопротивлений за один полный цикл времени установившегося движения машины.

 Поскольку плоскость параллелизма заданного коноида - , то через любую точку на его поверхности из простых линий можно проводить только фронтали. Любую фронталь начинают строить с её горизонтальной проекции. Потому, что эта проекция всегда параллельна оси . Но точка  на поверхности коноида задана не горизонтальной проекцией, то остается решать задачу способом случайной кривой на каркасе поверхности.

Решение:

 1). Задать каркас поверхности семейством фронталей.

 2). Через точку  провести фронтальную проекцию

произвольной линии .

 3). Построить точки пересечения линии  с элементами каркаса.

 4). Используя горизонтальные проекции полученных точек, построить горизонтальную проекцию линии .

 5). Построить искомую проекцию точки .

 На примере данной задачи показан и способ задания линии на каркасе поверхности.

  При построении линии на поверхности следует учитывать, что полностью или частично она может быть невидимой. Для наглядности и для удобства обводки чертежа невидимые проекции рекомендуется изображать в виде крестика. Должна соблюдаться и последовательность решения задачи:

 1. Определить или построить опорные точки линии. Это начало и конец линии, очерковые точки (границы видимости ), экстремальные и другие чем-то особенные точки. Опорные точки следует обозначать прописными буквами, а промежуточные точки лучше обозначать цифрами

 2. Построить необходимое число промежуточных точек.

 3. Построить недостающую проекцию линии.

 4. Окончательно обвести чертеж с учетом видимости, используя для этого стандартные типы линий.

Построение овала по двум осям

Последовательность построений (рис.2.17)

 1). Заданы большая АВ и малая СD оси овала (рис.2.17а);

 2).Соединим точки А и С. На этой прямой откладываем точку М: СМ=АО-ОС= СК (рис.2.17б);

 3).Отрезок АМ делим пополам , и из середины этого отрезка восстанавливаем перпендикуляр до пересечения с осями овала в точках О1 и О4 (рис.2.17в);

 4).Строим точки, симметричные точкам О1 и О4, получаем О2 и О3 (рис.2.17г);

 5).Проводим линии центров О1О3, О1О4, О2О3, О2О4 (рис.2.17д);

 6).Из центра О4 проводим дугу радиусом R1=О4С до пересечения с линиями центров О4О1 и О4О2 в точках 1 и 2. Аналогично находим точки 3 и 4 (рис.2.17е);

 7).Замыкающие дуги овала проводим из центров О1 и О2 радиусом R2=О1А (рис.2.17ж).

 8) Результаты построения – рис. 2.17з.

 Рис.2.17


На главную