Основы начертательной геометрии Метрические задачи Электротехника Математика Информатика

Курсовая работа Расчет электрической цепи постоянного и переменного тока

Расчет трехфазной цепи при соединении потребителей звездой

Рассмотрим трехфазную цепь с линейным напряжением UЛ и нагрузкой, соединенной звездой с нейтральным проводом. Схема такой цепи приведена на рисунке 2.8. Параметры цепи: UЛ = 380 В, r1 = 6 Ом, xL1 = 8 Ом, xС2 = 10 Ом, xL3 = 10 Ом. Метод контурных токов Этот метод применим для расчета любых цепей. Он базируется на уравнениях, составленных по второму закону Кирхгофа. В схеме выделяются независимые контуры, и в каждом контуре протекает свой так называемый контурный ток. Теория электрических цепей Курс лекций и задач

Решение. Так как в схеме есть нейтральный провод, то напряжение на фазах нагрузки равно соответствующему фазному напряжению источника питания:

 

Рисунок  2.8 ─ Схема трёхфазной цепи при соединении потребителей звездой

 ,

,

,

в числовом виде:

 В,  В,  В.

В общем случае полное сопротивление фазы в комплексной форме определяют с помощью выражения, которое использовалось в однофазных цепях,

.

Применяем эту формулу для нашего конкретного случая и получаем полные сопротивления фаз в следующем виде:

 

 Ом,

 Ом,

 Ом.

МОЩНОСТЬ ТРЕХФАЗНОЙ СИСТЕМЫ И ЕЕ ИЗМЕРЕНИЕ

Активная мощность трехфазной системы Р является суммой фазных активных мощностей, а для каждой из них справедливо основное выражение активной мощности цепей переменного тока. Следовательно, фазная активная мощность Рф = 3UфIфcos φ и при симметричной нагрузке активная мощность трехфазного устройства

 Р = ЗРФ = 3 UфIф cos φ (3.7)

Но в трехфазных установках в большинстве случаев приходится выражать активную мощность устройства не через фазные, а через линейные величины. Это легко сделать на основании соотношений фазных и линейных величин, заменив в выражении активной мощности фазные величины линейными. При соединении звездой Uф = Uл / √3 ; 1Ф = Iл, а при соединении треугольником Uф = Uji; Iф = Iл/√3 .После подстановки этих выражений в формулу (3.7) получим одно и то же выражение  для активной мощности трехфазной симметричной установки:

Хотя это выражение относится только к активной мощности симметричной системы, тем не менее им можно руководствоваться в большинстве случаев, так как в промышленных устройствах основная нагрузка редко бывает несимметричной.

Реактивная мощность в симметричной системе, так же как и полная мощность, выражается через линейные величины подобно активной мощности:

Простейшие условия измерения активной мощности трехфазной системы имеются в том случае, если фазы приемников соединены звездой с доступной нейтральной точкой. В этом случае для измерения мощности одной фазы цепь тока ваттметра соединяют последовательно с одной из фаз приемника (рис. 3.12 а), а цепь напряжения включают под напряжение той фазы приемника, в которую включена цепь тока ваттметра, т. е. зажимы цепи напряжения ваттметра присоединяются один к линейному проводу, а второй—к нейтральной точке приемника. В подобных условиях измеренная мощность

а мощность симметричного приемника


На главную