Основы начертательной геометрии Метрические задачи Электротехника Математика Информатика

Курсовая работа Расчет электрической цепи постоянного и переменного тока

Особенности трехфазных цепей

Трехфазная цепь переменного тока состоит из трехфазного источника питания, трехфазного потребителя и проводников линии связи между ними.

Симметричный трехфазный источник питания можно представить в виде трех однофазных источников, работающих на одной частоте с одинаковым напряжением и имеющих временной угол сдвига фаз 120˚. Эти источники могут соединяться звездой или треугольником. При соединении звездой условные начала фаз используют для подключения трех линейных проводников A, B, C, а концы фаз объединяют в одну точку, называемую нейтральной точкой источника питания (трехфазного генератора или трансформатора). К этой точке может подключаться нейтральный провод N. Схема соединения фаз источника питания звездой приведена на рисунке 2.6, а. Передача энергии от активного двухполюсника к пассивному . Теория электрических цепей Курс лекций и задач

Напряжение между линейным и нейтральным проводами называется фазным, а между линейными проводами – линейным.

В комплексной форме записи выражения для фазных напряжений имеют вид:

 В,  В,  В. (2.28)

Соответствующие им линейные напряжения при соединении звездой:

 В,  В,

 В. (2.29)

Здесь UФф – модуль фазного напряжения источника питания, а UЛл модуль линейного напряжения. В симметричной трёхфазной системе, при соединении фаз источника звездой, между этими напряжениями есть взаимосвязь,:

 . (2.30)

При включении фаз треугольником фазные источники питания соединяют последовательно в замкнутый контур (рисунок 2.6, б).

 а) б)

Рисунок 2.6 – Схемы соединения фаз источника питания:

а – звездой; б – треугольником

Из точек объединения источников между собой выводятся три линейных провода A, B, C, идущие к нагрузке. Из рисунка 2.6, б видно, что выводы фазных источников подключены к линейным проводникам, а, следовательно, при соединении фаз источника треугольником фазные напряжения равны линейным. Нейтральный провод в этом случае отсутствует.

К трехфазному источнику может подключаться нагрузка. По величине и характеру трёхфазная нагрузка бывает симметричной и несимметричной. В случае симметричной нагрузки комплексные сопротивления  всех трёх фаз одинаковы, а если эти сопротивления различны, то нагрузка несимметричная. Фазы нагрузки могут соединяться между собой звездой или треугольником (рисунок 2.7), независимо от схемы соединения источника.

 

Рисунок 2.7 – Схемы соединения фаз нагрузки

 Соединение звездой может быть с нейтральным проводом (см. рисунок 2.7, а) и без него. Отсутствие нейтрального провода устраняет жёсткую привязку напряжения на нагрузке к напряжению источника питания, и в случае несимметричной нагрузки по фазам эти напряжения не равны между собой. Чтобы их отличить, условились, в индексах буквенных обозначений напряжений и токов источника питания, применять прописные буквы, а в параметрах, присущих нагрузке, – строчные.

Пусть необходимо построить векторные диаграммы токов и напряжений для схем, представленных на рисунке 2.7.

На схеме рис. 2.7а все сопротивления соединены последовательно, поэтому за основу для построения векторной диаграммы можно принять ток, являющийся общим элементом для сопротивлений. В произвольном направлении в определенном масштабе откладывают вектор тока I (рисунок 2.8а). Известно, что

вектор напряжения на активном сопротивлении совпадает с током по фазе, поэтому откладывают в выбранном масштабе вектор Ur совпадающим по направлению с током.

Так как индуктивное напряжение опережает ток по фазе на угол 90°, то из конца вектора Ur, откладывают вектор UL выбранном масштабе и повернутым относительно тока на угол π/2 против часовой стрелки. Так как емкостное напряжение Uc отстает по фазе от тока на угол 90°, то из конца вектора UL откладывают вектор Uc. В выбранном масштабе и повернутым относительно тока на угол π/2 по часовой стрелке.

Так как напряжение на входе схемы U согласно второго закона Кирхгофа не может быть ничем иным, как суммой падений напряжении в цепи, то

Поэтому вектор, соединяющий начало Ur и конец, Uc есть вектор сетевого напряжения U.

Векторная диаграмма для цепи по рисунку 2.8 б строится точно так же, но так как все элементы схемы соединены параллельно, то начинают построение с единого для всех сопротивлений элемента -напряжения U.

Угол сдвига по фазе φ(фи) между током и напряжением находят из треугольника сопротивлений или треугольника проводимостей.

Например, для схемы на рисунке 2.7 тангенс угла сдвига по фазе между сетевым напряжением и током равен:


На главную