Основы начертательной геометрии Метрические задачи Электротехника Математика Информатика

Курсовая работа Расчет электрической цепи постоянного и переменного тока

Индуктивность есть коэффициент пропорциональности между потоко-сцеплением и током:

 (2.5)

где

ψ

потокосцепление, равное произведению магнитного потока на чис-ло витков, с которыми он сцеплён.

Емкость C есть коэффициент пропорциональности между величиной заряда и напряжением:

, (2.6)

где

q

электрический заряд;,

u

напряжение.

Индуктивное сопротивление цепи переменного тока, содержащей элемент L,

. (2.7) Графические методы расчета Лабораторные работы по электротехнике

Емкостное сопротивление цепи переменного тока, содержащей элемент С,

 . (2.8)

 Полное сопротивление цепи переменного тока при последовательном соединении r, L и C

. (2.9)

Единицей измерения всех этих сопротивлений служит ом (Ом).

Индуктивное и емкостное сопротивления считаются реактивными. Это значит, что в них, в отличие от активных, не происходит превращение электрической энергии в другие виды энергии. Наличие тока в реактивном элементе объясняется периодическим обменом энергией между таким элементом и сетью.

Произведение мгновенных значений тока и напряжения есть мгновенная мощность цепи переменного тока и в общем случае, при синусоидальных токах и напряжениях, она определяется выражением

, (2.10)

где

φ

угол сдвига фаз между напряжением и током потребителя.

Формула для мгновенной мощности состоит из двух составляющих: постоянной, не зависящей от времени UIcosj, и переменной, изменяющейся во времени с двойной частотой UIcos (2wt – j).

Расчет сложной цепи при помощи уравнений Кирхгофа проводят в следующей последовательности:

1)  пo возможности упрощают расчетную схему (заменив, например, несколько параллельно  соединенных сопротивлений одним эквивалентным сопротивлением);

2) наносят на схеме известные направления э.д.с;

3) задаются произвольными положительными направлениями токов;

4) составляют уравнения по первому закону Кирхгофа для всех узловых точек схемы, кроме одной;

5)  составляют недостающие уравнения по второму закону Кирхгофа, обходя замкнутые контуры по часовой стрелке или против часовой стрелки. При этом э.д.с. и токи,  совпадающие с направлением обхода, принимаются положительными, а э.д.с. с. и токи, противоположные (т. е. встречные) этому направлению, — отрицательными;

6)  решают составленную систему уравнений и определяют неизвестные токи. Если некоторые значения токов получаются со знаком «минус», то это означает, что они имеют направления, обратные тем, которые были условно приняты для этих токов в начале расчета.

Необходимо отметить следующее: если в результате расчета сложной цепи фактическое направление тока в энергопреобразующем

устройстве (электрической машине или аккумуляторе) совпадает с направлением его э.д.с, то это свидетельствует о том, что рассматриваемое устройство работает в качестве источника электроэнергии, а не электроприемника. Если направление тока обратно направлению э.д.с, то это означает, что устройство является электроприемником. Для пояснения сказанного на рис. 1.11 приведена схема разряда (а) и заряда {6) аккумулятора. В схеме (а) аккумулятор работает как генератор, в схеме (б) он является потребителем электрической энергии.

В отдельных случаях могут быть заданы лишь некоторые значений э.д.с, токов и сопротивлений. Общее число неизвестных величин должно соответствовать возможному числу независимых уравнений, составляемых по законам Кирхгофа для рассматриваемой схемы. В таких случаях приходится в начале расчета задаваться положительными направлениями не только неизвестных токов, но и неизвестных э.д.с. (или напряжений).

Фактические направления этих э.д.с, напряжений и токов находятся в зависимости от полученного знака ( + или —) у каждой из величин, найденных в результате решения составленной системы уравнений.


На главную